Home

Research

Here are descriptions of and links to research papers I've written or collaborated on

Numerical Investigation of Nosetip Bluntness Effects on Cone Frustum Boundary Layer Transition in Hypersonic Flow

Authors: Luke J. Melander, Anubhav Dwivedi, and Graham V. Candler

Publication Date: Dec 29, 2021

Abstract

Experiments and computations have extensively studied hypersonic boundary layer transition over sharp and blunt cones. Transition on sharp and small bluntness cones is dominated by modal growth of planar waves. As bluntness increases, an entropy layer develops that stabilizes Mack modes and pushes the transition front downstream. Experiments show that beyond a critical nose bluntness, downstream movement of the transition front reverses and despite being modally stable the transition front moves up to the nose tip. Despite many experimental and numerical investigations, the transition reversal phenomenon has not been clearly linked to a physical mechanism. In this study, direct numerical simulation (DNS) and input-output (IO) are utilized to study the effects of nose bluntness on the amplification of external disturbances. DNS is performed on low dissipation baseflows that are forced stochastically with freestream noise and wall roughness. Spectral proper orthogonal decomposition is used on snapshots of the statistically steady state DNS solution to isolate globally dominant resolvent modes. An input-output framework is used to study the optimal flow response to forcing in the linear regime. Results from both the DNS and IO identify low frequency streak-like structures that grow significantly on the nose tip.These structures are shown to exist on both intermediate bluntness (1.524 mm radius) cones and large bluntness (15.24 mm radius) cones, but grow 2 orders of magnitude more in the large bluntness case. The structures are extremely receptive to roughness. The low frequency streak-like structures identified in this work behave in accordance with experimental observations of transition reversal, potentially providing a physical mechanism to explain the phenomenon.

Investigation of Atmospheric Turbulence and Shock Interaction for a Hypersonic Sphere-cone

Authors: Luke J. Melander and Graham V. Candler

Publication Date: Jan 4, 2021

Abstract

Laminar to turbulent boundary layer transition is known to be sensitive to freestream disturbances. However, the disturbances in the upper atmosphere are not well characterized, and a multi-university effort to characterize turbulence and particle distributions in the stratosphere aims to address that. This paper considers the numerical methods associated with simulating shock-turbulence interactions for a hypersonic sphere-cone. Atmospheric turbulence is first generally characterized, and then a turbulent shear simulation is characterized in relation to hypersonic flight in order to establish a method for simulating the interaction between hypersonic vehicles and atmospheric turbulence. Low-dissipation Direct Numerical Simulation (DNS) methods for the compressible Navier-Stokes equations are compared with linear equations for planar wave and oblique shock interaction and found to accurately simulate the shock-disturbance interaction. Linear growth of boundary layer waves due to interaction with the second mode instability in hypersonic boundary layer is also simulated with low dissipation DNS and found to compare well with predictions from the Parabolized Stability Equations (PSE). Lastly, atmospheric turbulence in relation to hypersonic flight and simulation requirements to determine it's effect on hypersonic boundary layer transition are discussed.

Stability Analysis of HIFiRE-1 with Flight Wall Temperatures

Authors: Luke J. Melander, Anthony Knutson, John D. Reinert, and Graham V. Candler

Publication Date: June 8, 2020

Abstract

Laminar to turbulent boundary layer transition is sensitive to wall temperature distribution and freestream disturbances. The wall temperature can increase the boundary layer thickness and affect the growth rate of disturbances in the boundary layer. Additionally, the receptivity and growth mechanisms in the boundary layer can capture and grow small amplitude disturbances that eventually cause transition. The goal of this paper is to use new capabilities to better inform the PSE analysis and introduce the feasibility of performing receptivity analysis with DNS. The ascent trajectory for HIFiRE-1 is simulated using a loosely coupled conjugate heat transfer solver. The wall temperature data is then used as a boundary condition for the PSE analysis. The PSE analysis agreed with prior analysis for hypersonic blunt nose cones. Furthermore, the PSE results showed large differences in the second-mode growth rate depending on the treatment of the wall temperature boundary condition. Finally, the capability for performing receptivity analysis with DNS is verified for a simple test case. Future work will use this new capability for inputting freestream disturbances into the flow field for HIFiRE-1.

I'll be updating this with links to papers I've written, and eventually my thesis when it's published